
Designing a Demonstrator of Formal Methods
for Railways Infrastructure Managers

Davide Basile 1, Maurice H. ter Beek 1, Alessandro Fantechi 1,2,
Alessio Ferrari 1, Stefania Gnesi 1, Laura Masullo3, Franco Mazzanti 1,

Andrea Piattino3, and Daniele Trentini3

1 ISTI–CNR, Pisa, Italy
{d.basile,m.terbeek,s.gnesi,a.ferrari,f.mazzanti}@isti.cnr.it

2 Università di Firenze, Firenze, Italy
{alessandro.fantechi}@unifi.it

3 SIRTI S.p.A., Genova, Italy
{l.masullo,a.piattino,d.trentini}@sirti.it

Abstract. The Shift2Rail Innovation Programme (IP) is focussing on
innovative technologies to enhance the overall railway market segments.
Formal methods and standard interfaces have been identified as two key
concepts to reduce time-to-market and costs, while ensuring safety, in-
teroperability and standardisation. However, the decision to start using
formal methods is still deemed too risky. Demonstrating technical and
commercial benefits of both formal methods and standard interfaces is
necessary to address the obstacles of learning curve and lack of clear
cost/benefit analysis that are hindering their adoption, and this is the
goal of the 4SECURail project, recently funded by the Shift2Rail IP.
In this paper, we provide the reasoning and the rationale for design-
ing the formal methods demonstrator for the 4SECURail project. The
design concerns two important issues that have been analysed: (i) the
usefulness of formal methods from the point of view of the infrastructure
managers, (ii) the adoption of a semi-formal SysML notation within our
formal methods demonstrator process.

1 Introduction

The European public-private Joint Undertaking (JU) for rail research Shift2Rail
(S2R)4, acting under the broad umbrella of the EU Research and Innovation
programme H2020, aims to improve the state-of-the-art of rail technology and
revolutionise rail as a mode of transport making it a backbone of future mobility.

The Shift2Rail Innovation Programme 2 is focussing on innovative technolo-
gies with a view to enhance the overall railway market segments. Two key con-
cepts that have been identified to reduce the time for developing and delivering
railway signalling systems are formal methods and standard interfaces. They are
also useful to reduce high costs for procurement, development, and maintenance.

4 http://www.shift2rail.org

http://orcid.org/0000-0002-7196-6609
http://orcid.org/0000-0002-2930-6367
http://orcid.org/0000-0002-4648-4667
http://orcid.org/0000-0002-0636-5663
http://orcid.org/0000-0002-0139-0421
http://orcid.org/0000-0003-4562-8777
http://www.shift2rail.org
Franco Mazzanti
This is a pre-peer-review version of an article published in Springer LNCS
Vol 12478 pp 467-485 (First Online October 2020).
The published LNCS version (doi 10.1007/978-3-030-61467-6_30) can be found at the link:
 https://link.springer.com/chapter/10.1007/978-3-030-61467-6_30 �

2 D.Basile et al.

Standard interfaces are needed to increase market competition and standardisa-
tion, and to reduce long-term life cycle costs, whereas formal methods are needed
to ensure correct behaviour, interoperability, and safety. The Shift2Rail initiative
plans to demonstrate technical and commercial benefits of formal methods and
standard interfaces, applied on selected applications, with the goal of widening
the industrial uptake of these key aspects. However, the decision to start us-
ing formal methods is often deemed too risky by management, and the railway
sector is notoriously cautious about the adoption of technological innovations
compared with other transport sectors [3]. Thus, demonstrating technical and
commercial benefits of formal methods and standard interfaces is necessary to
address the obstacles of learning curve and lack of clear cost/benefit analysis.

This paper presents the first results of the Shift2Rail project 4SECURail5,
and in particular of the workstream 1 named: “Demonstrator development for
the use of Formal Methods in Railway Environment”. This workstream aims
to provide a demonstrator of state-of-the-art formal methods and tools, applied
on a railway signalling subsystem described by means of standard interfaces.
This demonstrator will be used to evaluate the learning curve and to perform a
cost/benefit analysis of the adoption of formal methods in the railway industry.
In this paper, we discuss the overall process to follow for the rigorous construction
of system specifications (the formal methods demonstrator process), together
with the suitability criteria for the supporting tools and the description of the
architecture of the demonstrator itself. The main contributions are:

– a description of the planned architecture of the demonstrator, e.g., the ex-
pected types of (semi-)formal models to develop during the process;

– a discussion on the role of UML/SysML [42,44] as standardised notation
within the demonstrator and the role of the internally generated (semi-)formal
models with respect to the final system requirements specification that the
demonstrator process is expected to define;

– an identification of the kind of data about the cost of the approach that needs
to be assessed, having as target the cost-benefit analysis.

The paper is organised as follows. In Section 2, the 4SECURail project is
recalled. Sections 3, 4 and 5 describe the point of view of the infrastructure
managers, the architecture of the demonstrator, and the adoption of standard
notations. Finally, Section 6 discusses conclusions and future work.

2 The 4SECURail Project

Despite several success stories on railway applications of formal methods
(cf., e.g., [22,24,27,23,5,15]) these mathematically-based methods and tools for
system development still find significant obstacles to their adoption in railway
software industry.

5 https://www.4securail.eu/

https://www.4securail.eu/

A Demonstrator of Formal Methods for Infrastructure Managers 3

Obstacles to the Adoption of Formal Methods The major obstacle is the high
learning curve; formal methods have the image of being too difficult to apply
for ordinary engineers [3,5,29]. Other significant obstacles include the fact that
applicable standards, such as CENELEC EN 50128 [21] do recommend formal
methods, but do not provide sufficiently clear guidelines on how to use them in
a cost-effective way and there is no clear picture of what can be achieved using
formal methods (in terms of benefits, both technical and economical). This leads
to the transition to formal methods being deemed too risky by the management.

Another obstacle to the widespread use of formal methods is the lack of com-
mercial tools, easily integrated in the software development process and working
on open standard formats [29]. In fact, the current state of the art of the develop-
ment tools market either offers industry-ready, well maintained and supported
tools working on closed proprietary formats, or open source tools working on
standard open formats, but offering low levels of support and maintenance.

Formal Methods Demonstrator, Standard Interfaces and Cost-Benefit Analysis
To address these obstacles, 4SECURail foresees the development of a demonstra-
tor of state-of-the-art formal methods to be used as a benchmark to demonstrate
technical and commercial benefits of formal methods application on a selected
application (a railway subsystem). The formal development demonstrator pro-
totype will consist of the detailed description of the process that will be followed
to provide a rigorously verified model of the application under development,
together with the list of the tools to be employed. The demonstrator will also
take into due account the adoption of standard interfaces among the compo-
nents of the selected applications. The role of standard interfaces have also been
investigated in a previous Shift2Rail project, named X2Rail-26.

Interested Railway Stakeholders In the railway domain, it is expected that the
following stakeholders will be interested in the use of formal methods.

– Systems designers: formal methods will contribute to the early validation
of the consistency of captured requirements and the check of compliance of
design solutions with user and safety requirements.

– System and product developers: formal methods will provide an environment
for developing the project and the possibility of using simulators for testing.

– Infrastructure managers: main railway networks are under responsibility of
independent Infrastructure Managers whose interest is in increasing the in-
teroperability among different equipment suppliers, improving their compet-
itiveness and maximizing safety and reliability, at the same time reducing
life-cycle cost of signalling system: all goals supported by the adoption of
formal methods and standard interfaces.

4SECURail will address the views of these stakeholders, with special focus
on the infrastructure managers, exactly because it is expected that they will
benefit most, both in terms of safety and of cost, from the adoption of formal
methods and standard interfaces.
6 https://projects.shift2rail.org/s2r ip2 n.aspx?p=X2RAIL-2

https://projects.shift2rail.org/s2r_ip2_n.aspx?p=X2RAIL-2

4 D.Basile et al.

4SECURail Roadmap 4SECURail will be based on the results and indica-
tions provided by the X2Rail-2 project to select suitable tools for supporting
the development of a formal model and its verification. Moreover, tools and lan-
guages for the description of standard interfaces (e.g., Standard UML, SysML,
etc.) of the selected railway subsystem will also be considered and integrated in
the demonstrator framework. The exercising of the demonstrator on an identi-
fied railway subsystem will address the current obstacles and the lack of a clear
cost/benefit analysis for the appraisal of the application of formal methods. This
implies the assessment of different learning curves, the collection of relevant data
about cost and benefits, and provide results about the financial feasibility and
economic sustainability of the adoption of formal methods at micro and EU
level. The above goal will be achieved by implementing the following activities,
implemented in a specifically deployed Work Package (WP2) of 4SECURail.

– Development of the formal development demonstrator prototype, that
will consist in the identification of the overall process to be followed, phase
after phase, for the formal development, and establishing the criteria for
suitability of tools supporting each phase. In particular, the formal develop-
ment demonstrator will be based on the use case developed in X2Rail-2 [38,
Sect. 5.4.1]. The definition of the architecture of the demonstrator will include
the choice and integration of appropriate formal methods and tools, taking
into account the results produced by the Shift2Rail projects ASTRail and
X2Rail-2. Moreover, in this activity we will identify the tools for the descrip-
tion in standard interfaces of the railway subsystem.

– Selection of the railway signalling subsystem and its use for the exercising
of the formal development demonstrator prototype.

– Cost-benefit analysis, and identification of learning curve scenarios (and
related cost) connected to the adoption of formal methods. The cost-benefit
analysis will identify the financial feasibility and the economic impact of the
implementation of formal methods against the baseline scenario, made by
processes which do not exploit formal methods.

3 The Point of View of the Infrastructure Manager

An Infrastructure Manager (IM) has to provide a validated specification of a
desired equipment to the Manufacturers. In a classical client/developer scenario
(see Figure 1 left) the common practice is the generation of—usually informal—
system requirements document. This document can then be used by the devel-
oper to build an initial executable specification of the system, and then refine it
(possibly using formal or correct-by-construction methods) into a final product.

The scenario in case of railway IMs is slightly different, since the main interest
is in providing the same rigorous/verifiable specification not just to single devel-
opers, but to possibly multiple different developers that should produce equiv-
alent products (see Figure 1 right). This is precisely the case described by the

A Demonstrator of Formal Methods for Infrastructure Managers 5

Fig. 1. The classical client/developer scenario (left) and the client/multiple developers
scenario (right)

X2Rail-2 use case (see Section 2), where defining a standard/rigorous/verifiable
specification of the system to be developed becomes the IM’s responsibility.

Actually, in the case of railway IMs, the scenario is even more complex.
In fact, the railway infrastructure is constituted by a multitude of subsystems
(each one possibly developed by a different supplier) that must correctly interact
among them. In this case, the problem of building rigorous/formal/verifiable
specifications should extend also to the verification of the interactions between
these components (see Figure 2). Clearly this does not hold only for railway IMs,
but also for any other kind of complex infrastructures (e.g., telecommunications).

This introduces a further dimension of complexity. For example, safety prop-
erties can often be verified by reasoning at the level of single subsystems (e.g.,
ensuring that independently from the possible external interactions, no unsafe
conditions are even reached), but the same cannot be said for specific properties
related to the composite behaviour of several subsystems (e.g., liveness, absence
of deadlocks, or missing desired execution paths involving the behaviour of sev-
eral subsystems). A special case of these scenarios is when the produced spec-
ification takes the role of “standard specification” supported by international
organisations (like the International Union of Railways (UIC)7, the European
Union Agency for Railways (ERA)8, or UNISIG9), an industrial consortium to
develop ERTMS/ETCS technical specifications), defined with the aim of creating
interoperable railways in the whole of Europe (Single European Railway Area,
SERA). For example, Figure 2 depicts interoperability between Radio Block
Centre (RBC) and Interlocking (IXL) by means of the RBC-IXL standard in-
terface; and between IXL and Level Crossing (LX) by means of the IXL-LX
standard interface.

7 https://uic.org/
8 https://www.era.europa.eu/
9 http://www.ertms.net/wp-content/uploads/2014/09/ERTMS Factsheet 8

UNISIG.pdf

https://uic.org/
https://www.era.europa.eu/
http://www.ertms.net/wp-content/uploads/2014/09/ERTMS_Factsheet_8_UNISIG.pdf
http://www.ertms.net/wp-content/uploads/2014/09/ERTMS_Factsheet_8_UNISIG.pdf

6 D.Basile et al.

Fig. 2. The client/multiple developers scenario within a complex infrastructure

The role of Standard(ised) interfaces The goal of our demonstrator related
to the adoption of “standard interfaces” includes two standardisation aspects,
since it aims at exploiting the use of formal methods for the definition of stan-
dardised interfaces (goal: interoperability) described in standard notation (e.g.
SysML) (goals: uniformity, understandability, non-ambiguity). A very detailed
presentation of the expected benefits from the adoption of standard notations
for standardised signalling interfaces can be found in [13].

4 The Overall Structure of the Demonstrator Process

We now describe the overall structure of a demonstrator process aimed at em-
ploying formal methods to support IMs, distinguishing three possible cases. The
next section will be dedicated to the specific instantiation of this process in the
4SECURail context. The overall structure of a generic software development pro-
cess targeted to the definition of rigorous system specifications which exploits
the use of formal methods (our demonstrator) can be described as in Figure 3.

First Case (with requirements elicitation). Starting from some input
describing the initial IM requirements of the system, we start an agile10 develop-
ment phase in which the requirements are transformed into “formal simulatable
models”. These models are developed incrementally, and continuously analysed
by means of formal verification, simulation, animation, and test case generation.
These abstract formal models can also be refined by adding additional details
into “refined simulatable models” that may help in validating the system be-
haviour, possibly through simulation and animation. Once these formal models
are sufficiently stable, they represent the base for the construction of the demon-
strator output (the official system requirements specification), in the form of

10 https://www.agilealliance.org/

https://www.agilealliance.org/

A Demonstrator of Formal Methods for Infrastructure Managers 7

Fig. 3. Overall generic structure of demonstrator (first case)

description of “abstract system requirements”, “safety requirements”, “detailed
system requirements” (see Figure 3). The resulting system requirements are still
likely to be expressed in natural language, but enriched with tables and diagrams
extracted from the (semi-)formal models. The (semi-)formal models themselves
might be made available as complementary documentation.

On one hand, the construction of multiple, different semi-formal/simulatable/
formally verifiable models allows to obtain a deep understanding of the system
design from many points of view and many levels of abstraction. On the other
hand, this multiplicity raises the problem of keeping these models somewhat
“synchronised”. For example, if, for any reason, one of the models needs to be
modified because of the discovery of some defect, the impact of the change on
the other models surely cannot be ignored. This may require the construction
and maintenance of some kind of cross-references between these artifacts, and
probably also between the artifacts of the final “system requirements specifica-
tion” resulting from the process. The effort needed for keeping all the different
artifacts well synchronised should not be underestimated and might play a non-
trivial role in deciding how many “points of view” to take into account.

Second Case (without requirements elicitation). The whole schema
still holds in the case in which the input of the overall demonstrator process is not
constituted by Draft IM Requirements, but by an already consolidated/official
set of system requirements/safety requirements, that should be the object of
more rigorous analysis. In this case, we simply would not have the Requirements
Elicitation activity oriented to the consolidation of the Draft IM Requirements
(i.e., the upper block in Figure 3 is not present). In this second case, given
that the starting point is an already consolidated specification, the modelling
activities (in terms of tools and methods) might be somewhat different from
the incremental prototyping activity driven by a rigorous/formal Requirements
Elicitation phase.

8 D.Basile et al.

Third Case. The same overall schema might also work in the mixed case in
which an already consolidated set of system requirements/safety requirements
might have to be extended/updated by an additional set of new user require-
ments (somewhat of a composition of the previous two cases). In these cases, the
availability of previous formal simulatable artifacts would be of great help for the
process. We consider as already acknowledged (cf., e.g., the related Shift2Rail
surveys in [38,3,26,5]), that there is not a single formal method or tool that
can fit all the possibly desired verification and modelling needs in the railway
field [39,28]. Therefore, the whole Modelling and Analysis activity is supported
at its best by a rich integrated ecosystem of tools and methodologies, rather
than a single monolithic, usually closed, and tied to single specific methodologies
framework. We recognise, however, that at least in the first case, where a classi-
cal V-shaped process might be followed covering all the steps from Requirement
Elicitation to Official Requirements Specification generation and verification, a
reference modelling framework might actually help in building and maintaining
all the documentation related to the various artifacts being generated.

The expected output of the demonstrator process The set of artifacts
in output from the formal methods demonstrator process are represented in
our overall generic model by the final “System Requirements Specification”.
Actually, these artifacts might be of different nature and with different purposes,
we identify four cases:

– A rigorous natural language textual description, possibly enriched with stan-
dard diagrams and tables, that may constitute the legal document associated
to the specification;

– A simulatable semi-formal system description: this artifact might be consid-
ered as a very useful complement that might be made available to the devel-
opers for checking their correct understanding of the system to be developed;

– Formal verifiable specifications, allowing the developers to possibly exploit
these models for “correct-by-construction” code generation, and allowing the
IMs to maintain, further verify, and possibly improve the system specification
itself;

– A set of tests generated and successfully applied for the analysis of the various
models, that can provide developers with guidance and early verification for
the testing of the ongoing product development.

4.1 The architecture of the 4SECURail demonstrator

There are four points that directly affect the definition of the architecture of the
demonstrator: (i) how the semi-formal models describing the system requirement
specification are constructed for being analysed, (ii) how the simulatable models
of the system are constructed, (iii) how the formal models of the system are
contructed and verified, (iv) how the case study selected for the exercising the
demonstrator may affect its architecture. In the remainder of this section we will
discuss these four points.

A Demonstrator of Formal Methods for Infrastructure Managers 9

Specification with standard notations It is important to adopt as reference for
the demonstrator a standardised notation for systems specification, consider-
ing the indications of the EULYNX11 and X2Rail projects, which have chosen
UML/SysML diagrams (in particular their behavioural state machines and se-
quence diagrams). The ideal approach to system specification should rely on
an advanced support framework allowing to construct diagrams that are clear,
graphically appealing, rich of content and possibly interactive. Starting from
these, interactive simulation to explore the possible non-deterministic alterna-
tives present in the behaviour would be possible, allowing the formal verification
of system properties. Unfortunately, this ideal approach is still far from the cur-
rent state of the art. In practice, if we really want to construct diagrams that are
clear, graphically appealing and rich of content, it is necessary to make use of
specific drawing-oriented tools (e.g., in ASTRail, the Graphviz12 Graph Visual-
ization Software has been used for this purpose) that do not support simulation
and verification. Instead, diagrams automatically generated by UML/SysML-
based frameworks are often of a not sufficient graphical quality and may not
contain all the useful detailed information (e.g., the abstract events that relate
a system transition to one or more system requirements). At the same time,
however, they may be directly used to perform simulation and verification. The
use of UML/SysML-based frameworks allows the progress from system design
to code generation in a rather smooth way as well. This is usually of interest to
developers but of less interest to the point of view of IMs. It is therefore likely,
unless more experience comes out from the actual demonstrator experimenta-
tion, that a graphical SysML design will be adopted in our demonstrator without
any predetermined relation with a specific UML/SysML-based framework.

Frameworks for Simulatable Modelling As described above, the UML/SysML
state diagrams descriptions might be exploited in the demonstrator not only as
graphical designs with documentation purposes, or as a basis for translation into
formal verifiable notations, but also as simulatable models suitable for experi-
menting the actual system behaviour. This requires the exploitation of much
more complex (to learn, to use, to acquire) frameworks supporting execution
and simulation of composite systems based on interacting state machines. The
survey on semi-formal tools presented in X2Rail-2 deliverable D5.1 [38] indicates
as preferred frameworks for system simulation the following ones:

– PTC Integrity Modeler (now Windchill Modeler SySim)13;

– Sparx Systems Enterprise Architect14;

– No Magic Cameo Systems Modeller (now Dassault 3DS Cameo Systems Mod-
eller)15.

11 https://eulynx.eu/
12 https://www.graphviz.org/
13 https://www.ptc.com/en/products/plm/plm-products/windchill/modeler/sysim
14 https://sparxsystems.com/products/ea/index.html
15 https://www.nomagic.com/products/cameo-systems-modeler

https://eulynx.eu/
https://www.graphviz.org/
https://www.ptc.com/en/products/plm/plm-products/windchill/modeler/sysim
https://sparxsystems.com/products/ea/index.html
https://www.nomagic.com/products/cameo-systems-modeler

10 D.Basile et al.

Although we intend to follow this indication, at the current stage of the 4SECU-
Rail project, we still need to acquire some hands-on initial experience on the
chosen case study to be able to select one of these tools.

In the context of the 4SECURail demonstrator, the exploitation of a frame-
work allowing to directly simulate the designed behavioural models, in agreement
with the official OMG fUML semantics [47], it would allow to ensure that the
designed graphical models actually reflect the expected system behaviour in an
unambiguous way.

Formal Verification by Model Checking One of the project’s main goals is to
transform these standard UML/SysML designs, whatever supporting tool is cho-
sen, into verifiable formal models. Theorem proving and model checking can be
considered the two most used approaches to system verification, also in railway
related contexts [3,5,28,15]. However, theorem proving, for instance as supported
by Atelier B, fits better a specification refinement process that guides the correct-
by-construction generation of code starting from an initial formal design. Theo-
rem proving moreover scales well to infinite state systems and can help identify
inductive properties. Model checking instead fits better a model-based approach
in which the behaviour of a simulatable design is explored and exhaustively ver-
ified. In 4SECURail we follow the model-checking approach, partly because we
are not interested in code generation. We will take advantage of the experience
gained within the ASTRail project [2], where UML state machine descriptions
were translated into Event-B state machines and subsequently analysed and
verified by model checking with the ProB tool16 [7].

ProB is an animator and model checker for the B-Method. It allows animation
of many B specifications, and can be used to systematically check a specification
for a range of errors. ProB is one of the tools also recommended by X2Rail-2 for
formal verifications. Some of the reasons for the successful experience of its use
in the ASTRail project, which suggest to reuse it in 4SECURail as well, are the
following: (i) it is a free, open source product whose code is distributed under
the EPL v1.0 license17; (ii) it is actively maintained and commercial support
is available from Formal Mind18; (iii) it runs on Linux, Windows, and MacOS
environments; (iv) it has several nice, very usable graphical interfaces, but it can
also be used from the command line; (v) it is well integrated in the B / Event-
B ecosystem (Rodin, Atelier B, iUML, B Toolkit); (vi) it allows construction,
animation and visualisation of non-deterministic systems; (vii) it allows formal
verification through different techniques like constraint solving, trace refinement
checking, and model checking.

Instead, the following are some known weak points of the use of ProB [1].
(i) It does not allow the explicit modelling of multiple mutually interacting state
machines. The only way to achieve that is to merge all the separate machines
into a global one. (ii) Event-B state machines are different from UML/SysML

16 https://www3.hhu.de/stups/prob/
17 http://www.eclipse.org/org/documents/epl-v10.html
18 http://www.formalmind.com/

https://www3.hhu.de/stups/prob/
http://www.eclipse.org/org/documents/epl-v10.html
http://www.formalmind.com/

A Demonstrator of Formal Methods for Infrastructure Managers 11

state machines. At the current state of the art several proposals of translations
from UML to ProB state machines have been made, but as far as we know, no in-
dustrially usable product currently supports that mapping. (iii) Model checking
does not support compositional approaches based on bisimulation equivalences
which are congruences with respect to parallel composition operations. In sim-
pler words, the verification approach does not scale when the system is composed
by many interacting asynchronous state machines.

Modelling the behaviour of a system through the design of a single state
machine has the advantage that this design can often be translated into the
notations supported by formal verification frameworks with a reasonable effort.
However, if we have to verify properties that depend on the behaviour of more
interacting asynchronous systems, the situation becomes more difficult. If the
components are not too complex, or not too many, a possibility is to merge all
of them into a unique “global” system modelled again as a single state machine.
Increasing the complexity and the number of components raises the state-space
explosion problem.

One solution is to constrain the verification to a not full, but rich set of
scenarios. That is, verifying the system under reasonable assumptions (e.g., ab-
sence of fatal errors in certain components, only one/two/three trains moving
from one RBC to another, limited presence of communication errors, just to
mention some). The other solution is to exploit alternative formal notations,
more oriented towards the design and verification of asynchronous interacting
systems and supported by specialised theoretical basis, such as process algebras.

We are unable at the current time to evaluate the overall final complexity of
the chosen case study, and whether model checking within the ProB framework
will be sufficient for its formal verification. In any case our approach does not
prevent the experimentation with alternative translations towards verification
engines more oriented to the analysis of “parallel asynchronous systems” (e.g.,
mCRL219 [20,14], CADP20 [18], FDR421 [31]), in the style of [36].

The overall execution flow embedding the three points discussed above is
represented in Figure 4.

The case study The fourth point concerns the case study chosen to test the
4SECURail demonstrator: the RBC/RBC protocol, as specified by the UNISIG
documents RBC/RBC Handover [52] and Safe Communication Interface [51].

In the ERTMS/ETCS train control system, a Radio Block Center (RBC) is
responsible for controlling the separation of trains on the part of a line under its
supervision. A handover procedure is needed to manage the interchange of train
control supervision between two neighbour RBCs: when a train is approaching
the end of the area supervised by one handing over RBC, an exchange of infor-
mation with the accepting RBC takes place to manage the transaction of respon-
sibilities. Since the two neighbouring RBCs may have been manufactured by dif-

19 https://www.mcrl2.org/
20 https://cadp.inria.fr/
21 https://cocotec.io/fdr/index.html

https://www.mcrl2.org/
https://cadp.inria.fr/
https://cocotec.io/fdr/index.html

12 D.Basile et al.

Fig. 4. Execution flow of the demonstrator prototype

ferent providers, the RBC/RBC interface is a typical product where development
processes of different supplier meet, and is therefore an optimal choice to inves-
tigate how natural language specification may create the possibility of diverging
interpretations, leading to interoperability issues. Being UNISIG SUBSET-039
and SUBSET-098 already consolidated standards, the overall structure of our
demonstrator process will reflect the second point of view of those described in
Section 4 (second case) and illustrated in Figure 4. This is the case of the formal
methods demonstrator process used for just analysing, verifying, and possibly
improving an already existing standard specification.

In our particular architecture, being the input requirements an already stable
official UNISIG standard, we will not rewrite it using again a natural language
notation, even in the case that the rewriting could appear as more precise or com-
plete. We can however complement it with annotations, if found useful, and/or
enrich it with further artifacts developed with the demonstrator process, such
as SysML models, animatable modes, formal model, test cases, and the required
cross references among these components.

4.2 Input for the cost/benefit analysis and learning curve evaluation

During the experimentation of our demonstrator process with its application to
the selected case study, it will be important to assess as much data as possible
about the costs of our approach. These costs might be related to actual monetary
costs incurred (like the academic/research costs for acquiring some tool licence),
or costs not actually incurred, but meaningful for the cost/benefit analysis (like
the cost of full commercial licence for the same tool, or the cost for commercial
support and training even if not activated, or cost of licence for alternative tools
with respect to the ones used in the demonstrator). These costs might also be
measured in terms of Man Month efforts and put in relation to the effort needed
to learn a specific tool and methodology (learning curve), or to the time/effort
needed to generate the animatable SysML specification, to generate the formally

A Demonstrator of Formal Methods for Infrastructure Managers 13

verifiable models, to select, design and perform the verifications of the properties
of interest, to maintain the various model well synchronized.

It will also be important to put in evidence the differential of the cost associ-
ated with the demonstrator between the cases with-or-without the exploitation
of formal methods. This final exercise of the consolidated demonstrator will be
the basis for studying the cost/benefit analysis of the approach and the evalua-
tion of the learning curve for the use of the selected methodologies and tools.

5 The Adoption of a Standard Notation

UML is a standardised modeling language consisting of an integrated set
of graphical diagrams, developed to help system and software developers for
specifying, visualizing, constructing, and documenting the artifacts of software
systems [53]. UML, in its SysML version, has been adopted also in the EULYNX
project within its underlying methodology for the development of standard in-
terfaces. A detailed analysis of this approach is well described in [13]. Graphical
designs do actually often convey information to the reader with a wider band
than just text, and require less effort in the reader for receiving it. However, a
textual representation readable/writeable by humans is equally important for
the simpler way in which it can be produced, shared, translated, modified, and
communicated. We believe that both kinds of representation should be made
available, and they should be and remain in synch.

It is also important for the designer to be able to simulate the UML be-
havioural models (e.g., state machines) to obtain initial feedback on the cor-
rectness of the design with respect to the intended requirements. Otherwise
models risk being precise, but wrong. A prerequisite for a reasonable introduc-
tion of UML as reference notation inside a formal methods demonstrator process
is that the meaning of the UML designs shall not be ambiguous or uncertain.
Since its origins, this has been recognised as a major problem for some of the be-
havioural diagrams of UML like state machines. The main known problems with
this behavioural notation are in fact: uncertainties in the semantics, absence of
standard action language, and lots of implementation freedom (cf., e.g., [25,49]).

Several studies and proposals have been conducted in the recent years with
the goal of associating a formal semantics to the UML behavioural diagrams (cf.,
e.g., [19,12,37]), but none of these actually succeeded in solving the problems. An
important step forward to overcome this problem has been achieved by the OMG
(Object Management Group) with the standardisation of fUML (Foundational
Subset for Executable UML Models) [47], which is also associated with an official
reference implementation [40]. This definition of fUML is complemented with the
definition of textual syntax for its action language Alf [46], and by the definition
of PSCS (Precise Semantics of UML Composite Structure) [43]. The purpose of
this fUML effort is the definition of an initial subset of UML that is free from
the semantic uncertainties affecting the full standard and that might define a
rigorous model of computation for the UML behavioural diagrams.

14 D.Basile et al.

The remaining limits of this effort are that the fUML definition is still de-
scribed in natural language, and that the “reference implementation” (that might
play the role of unambiguous operational semantics) is currently being imple-
mented only with respect to activity diagrams [40]. The Alf definition itself, when
considered in conjunction with the state machine notation, is currently defined
just through an “Informative Annex” [46] with no normative role. Within the
demonstrator process, UML can play three different roles: (i) as complementary
graphical documentation of specific aspects of the system requirements defini-
tion; (ii) as a direct notation for the execution and simulation of system models;
(iii) as baseline for translations towards other formal notations supported by
strong verification capabilities.

The use of UML for system design and documentation is supported by an
extremely rich set of tools. If we were interested in the generation of diagrams
for complementing the natural language description of a system, we might find
it useful to use UML tools exploiting more immediate and user-friendly textual
encoding able to automatically generate their corresponding diagrams. Support
for the use of UML for execution/simulation of the system behaviour is limited.

None of the “industry-ready” UML tools allow direct verification of be-
havioural models; as far as we know, only a few academic prototypes have been
developed for this purpose (e.g., UMC22 [4]). Therefore, we are left with the pos-
sibility of performing the translation from the UML models into other formal
notations supported by verification frameworks. The literature reports numerous
translation attempts [48,32,16,10,54,11,55,50,8,33,35,17,9,45,41,34], but none of
them seems to be well supported and integrated inside “industry-ready” UML
frameworks.

Given the focus on formal methods of the 4SECURail demonstrator, the
major interest is in the possibility of translating UML for verification, although
using UML for (documentation and simulation) may play a relevant role inside
the demonstrator. From this point of view our preferred choice would be the use
of an even stricter subset of the fUML state machine diagrams, defining a very
simple state machine structure that would allow a direct translation into the
main formalisms adopted by verification and simulation tools, such as Event-
B23 [1], LNT [30], and Uppaal24 [6].

Concluding this section, the criteria that will be applied for selecting specific
UML/SysML tools can be summarised as:

– unambiguity and standard quality of the supported notations;

– openness of the framework, i.e., how easy it is to import/export/translate the
notations versus other frameworks;

– usability of the tool user interface;

– degree of support for non-deterministic aspects in the design and

– degree and cost of support and training by the tool providers.

22 http://fmt.isti.cnr.it/kandisti
23 http://www.event-b.org/
24 http://www.uppaal.org/

http://fmt.isti.cnr.it/kandisti
http://www.event-b.org/
http://www.uppaal.org/

A Demonstrator of Formal Methods for Infrastructure Managers 15

6 Conclusions and Future Work

We have defined the rationale and the choices performed in terms of struc-
ture, methods, and tools selection, for the definition of a (semi-)formal software
development process (demonstrator) targeted to the construction of clear, rig-
orous, and verifiable system specifications. In particular, two important issues
deserve a specific analysis and discussion: (i) the clarification of the usefulness of
formal methods from the point of view of the Infrastructure Managers, (ii) the
role that the semi-formal SysML notation should play within our formal methods
demonstrator process.

This defined process will be exercised for the specification and analysis of
the identified case study fragment. After possible revision due to the experience
gained during this first exercising of the demonstrator, a consolidated version
will be used for the analysis and verification of the full case study. This final
exercising of the consolidated demonstrator will be the basis for the study of the
cost/benefit analysis of the approach and the evaluation of the learning curve
for the use of the selected methodologies and tools.

Acknowledgements This work has been partially funded by the 4SECURail
project. The 4SECURail project received funding from the Shift2Rail Joint Un-
dertaking under the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 881775 in the context of the open call
S2R-OC-IP2-01-2019, part of the “Annual Work Plan and Budget 2019”, of the
programme H2020-S2RJU-2019. The content of this paper reflects only the au-
thors’ view and the Shift2Rail Joint Undertaking is not responsible for any use
that may be made of the included information.

We also would like to thank the Italian MIUR PRIN 2017FTXR7S project
IT MaTTerS (Methods and Tools for Trustworthy Smart Systems).

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, UK (2010)

2. ASTRail Deliverable D4.3: Validation Report, http://astrail.eu/download.aspx?
id=d7ae1ebf-52b4-4bde-b25e-ae251fd906df

3. Basile, D., ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F., Piattino, A.,
Trentini, D., Ferrari, A.: On the Industrial Uptake of Formal Methods in the Rail-
way Domain. In: Furia, C.A., Winter, K. (eds.) iFM. LNCS, vol. 11023, pp. 20–29.
Springer (2018). https://doi.org/10.1007/978-3-319-98938-9 2

4. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Sci. Comput.
Program. 76(2), 119–135 (2011). https://doi.org/10.1016/j.scico.2010.07.002

5. ter Beek, M.H., Borälv, A., Fantechi, A., Ferrari, A., Gnesi, S., Löfving, C., Maz-
zanti, F.: Adopting Formal Methods in an Industrial Setting: The Railways Case.
In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM. LNCS, vol. 11800, pp.
762–772. Springer (2019). https://doi.org/10.1007/978-3-030-30942-8 46

http://astrail.eu/download.aspx?id=d7ae1ebf-52b4-4bde-b25e-ae251fd906df
http://astrail.eu/download.aspx?id=d7ae1ebf-52b4-4bde-b25e-ae251fd906df
https://doi.org/10.1007/978-3-319-98938-9_2
https://doi.org/10.1016/j.scico.2010.07.002
https://doi.org/10.1007/978-3-030-30942-8_46

16 D.Basile et al.

6. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: UPPAAL 4.0. In: Proceedings of the 3rd International Conference
on the Quantitative Evaluation of SysTems (QEST’06). pp. 125–126. IEEE (2006).
https://doi.org/10.1109/QEST.2006.59

7. Bendisposto, J., Clark, J., Dobrikov, I., Körner, P., Krings, S., Ladenberger, L.,
Leuschel, M., Plagge, D.: ProB 2.0 Tutorial. In: Butler, M., Hallerstede, S., Waldén,
M. (eds.) Proceedings of the 4th Rodin User and Developer Workshop. TUCS
Lecture Notes, Turku Centre for Computer Science (2013)

8. Berglehner, R., Rasheeq, A.: An Approach to Improve SysML Railway
Specification Using UML-B And EVENT-B. In: Poster at the 3rd Inter-
national Conference on Reliability, Safety, and Security of Railway Sys-
tems: Modelling, Analysis, Verification, and Certification (RSSRail’19) (2019).
https://doi.org/10.13140/RG.2.2.21925.45288

9. Bernardi, S., Flammini, F., Marrone, S., Mazzocca, N., Merseguer, J., Nardone,
R., Vittorini, V.: Enabling the usage of UML in the verification of railway systems:
The DAM-rail approach. Rel. Eng. Sys. Safety 120, 112–126 (2013)

10. Besnard, V., Brun, M., Jouault, F., Teodorov, C., Dhaussy, P.: Unified
LTL Verification and Embedded Execution of UML Models. In: Proceed-
ings of the 21th ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems (MoDELS’18). pp. 112–122. ACM (2018).
https://doi.org/10.1145/3239372.3239395

11. Bhaduri, P., Ramesh, S.: Model Checking of Statechart Models: Survey and
Research Directions. CoRR cs.SE/0407038 (2004), http://arxiv.org/abs/cs.SE/
0407038

12. Broy, M., Crane, M.L., Dingel, J., Hartman, A., Rumpe, B., Selic, B.: 2nd UML2
Semantics Symposium: Formal Semantics for UML. In: Kühne, T. (ed.) MoDELS.
LNCS, vol. 4364, pp. 318–323. Springer (2007). https://doi.org/10.1007/978-3-540-
69489-2 39

13. Bui, N.L.: An analysis of the benefits of EULYNX-style requirements modeling for
ProRail. Ph.D. thesis, Technische Universiteit Eindhoven (2017), https://research.
tue.nl/files/91220589/2017 09 28 ST Bui L.pdf

14. Bunte, O., Groote, J., Keiren, J., Laveaux, M., Neele, T., de Vink, E., Wes-
selink, W., Wijs, A., Willemse, T.: The mCRL2 Toolset for Analysing Con-
current Systems: Improvements in Expressivity and Usability. In: Vojnar, T.,
Zhang, L. (eds.) TACAS. LNCS, vol. 11428, pp. 21–39. Springer (2019).
https://doi.org/10.1007/978-3-030-17465-1 2

15. Butler, M., Körner, P., Krings, S., Lecomte, T., Leuschel, M., Mejia, L.F., Voisin,
L.: The First Twenty-Five Years of Industrial Use of the B-Method. In: ter Beek,
M., Ničković, D. (eds.) FMICS. LNCS, vol. 12327. Springer (2020)

16. Caltais, G., Leitner-Fischer, F., Leue, S., Weiser, J.: SysML to NuSMV Model
Transformation via Object Orientation. In: Berger, C., Mousavi, M.R., Wis-
niewski, R. (eds.) CyPhy. LNCS, vol. 10107, pp. 31–45. Springer (2016).
https://doi.org/10.1007/978-3-319-51738-4 3

17. Chen, J., Cui, H.: Translation from Adapted UML to Promela for CORBA-Based
Applications. In: Graf, S., Mounier, L. (eds.) SPIN. LNCS, vol. 2989, pp. 234–251.
Springer (2004). https://doi.org/10.1007/978-3-540-24732-6 17

18. Coste, N., Hermanns, H., Lang, F., Mateescu, R., Serwe, W.: Ten Years of Per-
formance Evaluation for Concurrent Systems Using CADP. In: Margaria, T., Stef-
fen, B. (eds.) ISoLA. Lecture Notes in Computer Science, vol. 6416, pp. 128–142.
Springer (2010). https://doi.org/10.1007/978-3-642-16561-0 18

https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.13140/RG.2.2.21925.45288
https://doi.org/10.1145/3239372.3239395
http://arxiv.org/abs/cs.SE/0407038
http://arxiv.org/abs/cs.SE/0407038
https://doi.org/10.1007/978-3-540-69489-2_39
https://doi.org/10.1007/978-3-540-69489-2_39
https://research.tue.nl/files/91220589/2017_09_28_ST_Bui_L.pdf
https://research.tue.nl/files/91220589/2017_09_28_ST_Bui_L.pdf
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-319-51738-4_3
https://doi.org/10.1007/978-3-540-24732-6_17
https://doi.org/10.1007/978-3-642-16561-0_18

A Demonstrator of Formal Methods for Infrastructure Managers 17

19. Crane, M.L., Dingel, J.: UML Vs. Classical Vs. Rhapsody Statecharts: Not All
Models Are Created Equal. In: Briand, L., Williams, C. (eds.) MoDELS. LNCS,
vol. 3713, pp. 97–112. Springer (2005). https://doi.org/10.1007/11557432 8

20. Cranen, S., Groote, J., Keiren, J., Stappers, F., de Vink, E., Wesselink, W.,
Willemse, T.: An Overview of the mCRL2 Toolset and Its Recent Advances. In:
Piterman, N., Smolka, S. (eds.) TACAS. LNCS, vol. 7795, pp. 199–213. Springer
(2013). https://doi.org/10.1007/978-3-642-36742-7 15

21. European Committee for Electrotechnical Standardization: CENELEC EN
50128 — Railway applications – Communication, signalling and processing sys-
tems – Software for railway control and protection systems (June 2011), https:
//standards.globalspec.com/std/1678027/cenelec-en-50128

22. Fantechi, A.: Twenty-Five Years of Formal Methods and Railways: What Next?
In: Counsell, S., Núñez, M. (eds.) SEFM. LNCS, vol. 8368, pp. 167–183. Springer
(2013). https://doi.org/10.1007/978-3-319-05032-4 13

23. Fantechi, A., Ferrari, A., Gnesi, S.: Formal Methods and Safety Certification: Chal-
lenges in the Railways Domain. In: Margaria, T., Steffen, B. (eds.) ISoLA. LNCS,
vol. 9953, pp. 261–265. Springer (2016). https://doi.org/10.1007/978-3-319-47169-
3 18

24. Fantechi, A., Fokkink, W., Morzenti, A.: Some Trends in Formal Methods Appli-
cations to Railway Signaling. In: Gnesi, S., Margaria, T. (eds.) Formal Methods
for Industrial Critical Systems: A Survey of Applications, chap. 4, pp. 61–84. John
Wiley & Sons (2013). https://doi.org/10.1002/9781118459898.ch4

25. Fecher, H., Schönborn, J., Kyas, M., de Roever, W.P.: 29 New Unclarities in the
Semantics of UML 2.0 State Machines. In: Lau, K.K., Banach, R. (eds.) ICFEM.
LNCS, vol. 3785, pp. 52–65. Springer (2005). https://doi.org/10.1007/11576280 5

26. Ferrari, A., ter Beek, M.H., Mazzanti, F., Basile, D., Fantechi, A., Gnesi, S., Piat-
tino, A., Trentini, D.: Survey on Formal Methods and Tools in Railways: The AST-
Rail Approach. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSS-
Rail. LNCS, vol. 11495, pp. 226–241. Springer (2019). https://doi.org/10.1007/978-
3-030-18744-6 15

27. Ferrari, A., Fantechi, A., Gnesi, S., Magnani, G.: Model-Based Development and
Formal Methods in the Railway Industry. IEEE Softw. 30(3), 28–34 (2013).
https://doi.org/10.1109/MS.2013.44

28. Ferrari, A., Mazzanti, F., Basile, D., ter Beek, M.H., Fantechi, A.: Comparing
formal tools for system design: a judgment study. In: Proceedings of the 42nd
International Conference on Software Engineering (ICSE). pp. 62–74. ACM (2020).
https://doi.org/10.1145/3377811.3380373

29. Garavel, H., ter Beek, M.H., van de Pol, J.: The 2020 Expert Survey on Formal
Methods. In: ter Beek, M., Ničković, D. (eds.) FMICS. LNCS, vol. 12327. Springer
(2020)

30. Garavel, H., Lang, F., Serwe, W.: From LOTOS to LNT. In: Katoen, J.P.,
Langerak, R., Rensink, A. (eds.) ModelEd, TestEd, TrustEd, LNCS, vol. 10500,
pp. 3–26. Springer (2017). https://doi.org/10.1007/978-3-319-68270-91

31. Gibson-Robinson, T., Armstrong, P.J., Boulgakov, A., Roscoe, A.W.: FDR3: a
parallel refinement checker for CSP. Int. J. Softw. Tools Technol. Transf. 18(2),
149–167 (2016). https://doi.org/10.1007/s10009-015-0377-y

32. Grumberg, O., Meller, Y., Yorav, K.: Applying Software Model Checking Tech-
niques for Behavioral UML Models. In: Giannakopoulou, D., Méry, D. (eds.) FM.
LNCS, vol. 7436, pp. 277–292. Springer (2012). https://doi.org/10.1007/978-3-642-
32759-9 25

https://doi.org/10.1007/11557432_8
https://doi.org/10.1007/978-3-642-36742-7_15
https://standards.globalspec.com/std/1678027/cenelec-en-50128
https://standards.globalspec.com/std/1678027/cenelec-en-50128
https://doi.org/10.1007/978-3-319-05032-4_13
https://doi.org/10.1007/978-3-319-47169-3_18
https://doi.org/10.1007/978-3-319-47169-3_18
https://doi.org/10.1002/9781118459898.ch4
https://doi.org/10.1007/11576280_5
https://doi.org/10.1007/978-3-030-18744-6_15
https://doi.org/10.1007/978-3-030-18744-6_15
https://doi.org/10.1109/MS.2013.44
https://doi.org/10.1145/3377811.3380373
https://doi.org/10.1007/978-3-319-68270-9_1
https://doi.org/10.1007/s10009-015-0377-y
https://doi.org/10.1007/978-3-642-32759-9_25
https://doi.org/10.1007/978-3-642-32759-9_25

18 D.Basile et al.

33. Hansen, H.H., Ketema, J., Luttik, B., Mousavi, M.R., van de Pol, J., dos Santos,
O.M.: Automated Verification of Executable UML Models. In: Aichernig, B.K.,
de Boer, F.S., Bonsangue, M.M. (eds.) FMCO. LNCS, vol. 6957, pp. 225–250.
Springer (2010). https://doi.org/10.1007/978-3-642-25271-6 12

34. Jussila, T., Dubrovin, J., Junttila, T., Latvala, T., Porres, I.: Model checking dy-
namic and hierarchical UML state machines. In: Proceedings of the 3rd Interna-
tional Workshop on Model Development, Validation and Verification (MoDeVa’06).
pp. 94–110. University of Queensland (2006)

35. Knapp, A., Merz, S., Rauh, C.: Model Checking Timed UML State Machines and
Collaborations. In: Damm, W., Olderog, E.R. (eds.) FTRTFT. LNCS, vol. 2469,
pp. 395–414. Springer (2002). https://doi.org/10.1007/3-540-45739-9 23

36. Lang, F., Mateescu, R., Mazzanti, F.: Sharp Congruences Adequate with Temporal
Logics Combining Weak and Strong Modalities. In: TACAS. LNCS, vol. 12079, pp.
57–76. Springer (2020). https://doi.org/10.1007/978-3-030-45237-7 4

37. Liu, S., Liu, Y., André, É., Choppy, C., Sun, J., Wadhwa, B., Dong, J.S.: A
Formal Semantics for Complete UML State Machines with Communications. In:
Johnsen, E.B., Petre, L. (eds.) IFM. LNCS, vol. 7940, pp. 331–346. Springer (2013).
https://doi.org/10.1007/978-3-642-38613-8 23

38. Löfving, C., Borälv, A: X2Rail-2 Deliverable D5.1, Formal Methods (Taxonomy
and Survey), Proposed Methods and Applications (May 2018), https://projects.
shift2rail.org/download.aspx?id=b4cf6a3d-f1f2-4dd3-ae01-2bada34596b8

39. Mazzanti, F., Ferrari, A., Spagnolo, G.O.: Towards formal methods diversity in
railways: an experience report with seven frameworks. Int. J. Softw. Tools Technol.
Transf. 20(3), 263–288 (2018). https://doi.org/10.1007/s10009-018-0488-3

40. ModelDriven: The fUML Reference Implementation, https://github.com/
ModelDriven/fUML-Reference-Implementation/blob/master/README.md

41. Ober, I., Graf, S., Ober, I.: Validation of UML Models via a Mapping to Commu-
nicating Extended Timed Automata. In: Graf, S., Mounier, L. (eds.) SPIN. LNCS,
vol. 2989, pp. 127–145. Springer (2004). https://doi.org/10.1007/978-3-540-24732-
6 9

42. Object Management Group: Unified Modelling Language (December 2017), https:
//www.omg.org/spec/UML/About-UML/

43. Object Management Group: Precise Semantics of UML Composite Structure
(PSCS) (March 2018), https://www.omg.org/spec/PSCS/1.1/PDF

44. Object Management Group: OMG Systems Modeling Language (OMG SysML)
(November 2019), http://www.omg.org/spec/SysML/1.6/

45. Oliveira, R., Dingel, J.: Supporting Model Refinement with Equivalence Check-
ing in the Context of Model-driven Engineering with UML-RT. In: Burgueño,
L., Corley, J., Bencomo, N., Clarke, P.J., Collet, P., Famelis, M., Ghosh, S.,
Gogolla, M., Greenyer, J., Guerra, E., Kokaly, S., Pierantonio, A., Rubin, J.,
Ruscio, D.D. (eds.) Proceedings of the 20th International Conference on Model
Driven Engineering Languages and Systems (MoDELS’17) — Satellite Events.
CEUR Workshop Proceedings, vol. 2019, pp. 307–314. CEUR-WS.org (2017),
http://ceur-ws.org/Vol-2019/modevva 2.pdf

46. OMG: Action Language for Foundational UML (Alf) — Concrete Syntax for a
UML Action Language (July 2017), https://www.omg.org/spec/ALF/1.1

47. OMG: Semantics of a Foundational Subset for Executable UML Models (fUML)
(December 2018), https://www.omg.org/spec/FUML/1.4/PDF

48. Pétin, J.F., Evrot, D., Morel, G., Lamy, P.: Combining SysML and formal methods
for safety requirements verification. In: Proceedings of the 22nd International Con-

https://doi.org/10.1007/978-3-642-25271-6_12
https://doi.org/10.1007/3-540-45739-9_23
https://doi.org/10.1007/978-3-030-45237-7_4
https://doi.org/10.1007/978-3-642-38613-8_23
https://projects.shift2rail.org/download.aspx?id=b4cf6a3d-f1f2-4dd3-ae01-2bada34596b8
https://projects.shift2rail.org/download.aspx?id=b4cf6a3d-f1f2-4dd3-ae01-2bada34596b8
https://doi.org/10.1007/s10009-018-0488-3
https://github.com/ModelDriven/fUML-Reference-Implementation/blob/master/README.md
https://github.com/ModelDriven/fUML-Reference-Implementation/blob/master/README.md
https://doi.org/10.1007/978-3-540-24732-6_9
https://doi.org/10.1007/978-3-540-24732-6_9
https://www.omg.org/spec/UML/About-UML/
https://www.omg.org/spec/UML/About-UML/
https://www.omg.org/spec/PSCS/1.1/PDF
http://www.omg.org/spec/SysML/1.6/
http://ceur-ws.org/Vol-2019/modevva_2.pdf
https://www.omg.org/spec/ALF/1.1
https://www.omg.org/spec/FUML/1.4/PDF

A Demonstrator of Formal Methods for Infrastructure Managers 19

ference on Software & Systems Engineering and their Applications (ICSSEA’10)
(2010), https://hal.archives-ouvertes.fr/hal-00533311/document

49. Simons, A.J.H., Graham, I.: 30 Things that Go Wrong in Object Modelling with
UML 1.3. In: Kilov, H., Rumpe, B., Simmonds, I. (eds.) Behavioral Specifica-
tions of Businesses and Systems, SECS, vol. 523, pp. 237–257. Springer (1999).
https://doi.org/10.1007/978-1-4615-5229-1 17

50. Snook, C., Savicks, V., Butler, M.: Verification of UML models by translation to
UML-B. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO. LNCS,
vol. 6957, pp. 251–266. Springer (2012). https://doi.org/10.1007/978-3-642-25271-
6 13

51. UNISIG: RBC-RBC Safe Communication Interface — SUBSET-098 (February
2012), https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs tsi
annex a - mandatory specifications/set of specifications 3 etcs b3 r2 gsm-r b1/
index063 - subset-098 v300.pdf

52. UNISIG: FIS for the RBC/RBC Handover — SUBSET-039 (December
2015), https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs tsi
annex a - mandatory specifications/set of specifications 3 etcs b3 r2 gsm-r b1/
index012 - subset-039 v320.pdf

53. Visual Paradigm: What is Unified Modeling Language (UML)?, https://www.
visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/

54. Yeung, W.L., Leung, K.R.P.H., Wang, J., Dong, W.: Improvements Towards
Formalizing UML State Diagrams in CSP. In: Proceedings of the 12th Asia-
Pacific Software Engineering Conference (APSEC’05). pp. 176–184. IEEE (2005).
https://doi.org/10.1109/APSEC.2005.70

55. Zhang, S.J., Liu, Y.: An Automatic Approach to Model Checking UML State
Machines. In: Proceedings of the 4th International Conference on Secure Soft-
ware Integration and Reliability Improvement (SSIRI-C’10). pp. 1–6. IEEE (2010).
https://doi.org/10.1109/SSIRI-C.2010.11

https://hal.archives-ouvertes.fr/hal-00533311/document
https://doi.org/10.1007/978-1-4615-5229-1_17
https://doi.org/10.1007/978-3-642-25271-6_13
https://doi.org/10.1007/978-3-642-25271-6_13
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index063_-_subset-098_v300.pdf
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index063_-_subset-098_v300.pdf
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index063_-_subset-098_v300.pdf
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index012_-_subset-039_v320.pdf
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index012_-_subset-039_v320.pdf
https://www.era.europa.eu/sites/default/files/filesystem/ertms/ccs_tsi_annex_a_-_mandatory_specifications/set_of_specifications_3_etcs_b3_r2_gsm-r_b1/index012_-_subset-039_v320.pdf
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/
https://doi.org/10.1109/APSEC.2005.70
https://doi.org/10.1109/SSIRI-C.2010.11

	Designing a Demonstrator of Formal Methods for Railways Infrastructure Managers
	Introduction
	The 4SECURail Project
	The Point of View of the Infrastructure Manager
	The role of Standard(ised) interfaces

	The Overall Structure of the Demonstrator Process
	The expected output of the demonstrator process
	The architecture of the 4SECURail demonstrator
	Input for the cost/benefit analysis and learning curve evaluation

	The Adoption of a Standard Notation
	Conclusions and Future Work
	Acknowledgements

